Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

Xin-Jian Song, ${ }^{\mathbf{a} *}$ Xiao-Hong Tan, ${ }^{\text {a }}$ Yao-Hua Li, ${ }^{\text {a }}$ Zheng-Wen Zhang ${ }^{\text {b }}$ and Yan-Gang Wang ${ }^{\text {b }}$

${ }^{\text {a School }}$ of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi Hubei 445000, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
whxjsong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.131$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1-[(4-Nitrophenoxy)acetyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazolin-2-yl)urea dimethylformamide solvate

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the urea scaffold, which adopts a planar configuration mediated by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, is nearly coplanar with the thiadiazole ring and the benzene ring. Intermolecular paired $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds result in the formation of an $R_{2}^{2}(6)$ motif. Intermolecular $\pi-\pi$ stacking interactions are also present.

Comment

1,3,4-Thiadiazole derivatives are known to display a broad spectrum of pesticidal activity (Nakagawa et al., 1996; Wang et al., 2004). Aroyl ureas have been reported to possess diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant growth regulating activities (Wang et al., 1998; Zhang et al., 2005). In an extensive search for new plant growth regulators, compounds incorporating both the 1,3,4thiadiazole nucleus and aroyl urea groups have been synthesized in our laboratory, including the title compound, (I). The crystal structure of (I) has been investigated by X-ray diffraction as part of our ongoing structural studies of this class (Song, Tan et al., 2005; Song, Zhang et al., 2005) and to provide a basis for consideration of stereochemical structureactivity relationships.

(I)

The asymmetric unit of the crystal structure contains a solvent molecule of dimethylformamide (DMF; Fig. 1). The acyl urea scaffold is essentially planar for the formation of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, thus assuming the most stable configuration. The molecule is nearly planar, the dihedral angle formed by the thiadiazole ring with the benzene ring being $7.3(1)^{\circ}$. Bond lengths and angles in (I) are as expected (Table 1). In the crystal structure, two neighbouring molecules are linked by complementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into an $R_{2}^{2}(6)$ motif in a head-to-head manner, as shown in Fig. 2. Also present are $\pi-\pi$ stacking interactions (Fig. 2) between thiadiazole and benzene rings. The interplanar spacing is $3.655(2) \AA$, the centroid-to-centroid separation is 3.874 (2) \AA and the centroid offset is 1.284 (2) \AA.

Received 15 August 2005 Accepted 24 August 2005 Online 31 August 2005

Experimental

The required 2-amino-5-mercapto-1,3,4-thiadiazole was prepared by addition cyclocondensation of thiosemicarbazide and carbon disulfide according to a literature method (Wang et al., 1999). The title compound was then synthesized according to the procedure of Wang et al. (2003). Suitable crystals for the X-ray analysis were obtained by slow evaporation of an acetone-DMF (3:1) solution at room temperature (m.p. 510-511 K). IR (KBr, cm^{-1}): v 3339, 3081, 1724, 1706, 1602, 1256; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 14.15(s, 1 \mathrm{H}), 11.40(s, 1 \mathrm{H})$, $11.07(s, 1 \mathrm{H}), 8.22-7.10(m, 4 \mathrm{H}), 4.93(s, 2 \mathrm{H})$. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$: C 37.18, H 2.55, N 19.71\%; found: C 36.97, H 2.73 , N 19.82%.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.528 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$M_{r}=428.47$
Triclinic, $P \overline{1}$
$a=7.9981$ (12) \AA
$b=11.3139$ (16) \AA
$c=12.0232(17) \AA$
$\alpha=68.893$ (2) ${ }^{\circ}$
$\beta=70.744(2)^{\circ}$
$\gamma=70.897(2)^{\circ}$
$V=931.0(2) \AA^{3}$
Cell parameters from 1691 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.936, T_{\text {max }}=0.936$
4982 measured reflections
3253 independent reflections
2384 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 13$
$l=-14 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.131$
$S=1.02$
3253 reflections
255 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0673 P)^{2}\right. \\
& +0.0083 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{C} 8-\mathrm{O} 4$	$1.216(3)$	$\mathrm{C} 10-\mathrm{N} 3$	$1.374(3)$
$\mathrm{C} 8-\mathrm{N} 2$	$1.364(3)$	$\mathrm{C} 10-\mathrm{S} 1$	$1.736(3)$
$\mathrm{C} 9-\mathrm{O} 5$	$1.205(3)$	$\mathrm{C} 11-\mathrm{N} 5$	$1.335(3)$
$\mathrm{C} 9-\mathrm{N} 3$	$1.356(3)$	$\mathrm{C} 11-\mathrm{S} 2$	$1.656(3)$
$\mathrm{C} 9-\mathrm{N} 2$	$1.389(3)$	$\mathrm{C} 11-\mathrm{S} 1$	$1.740(3)$
$\mathrm{C} 10-\mathrm{N} 4$	$1.282(3)$	$\mathrm{N} 4-\mathrm{N} 5$	$1.370(3)$
O3-C7-C8	$110.7(2)$	$\mathrm{S} 2-\mathrm{C} 11-\mathrm{S} 1$	$126.19(17)$
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{N} 2$	$124.2(3)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$122.9(3)$
N2-C8-C7	$117.8(2)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$126.9(2)$
$\mathrm{O} 5-\mathrm{C} 9-\mathrm{N} 2$	$121.7(2)$	$\mathrm{C} 10-\mathrm{N} 4-\mathrm{N} 5$	$108.3(2)$
N3-C9-N2	$115.2(2)$	$\mathrm{C} 11-\mathrm{N} 5-\mathrm{N} 4$	$119.7(2)$
N4-C10-S1	$115.9(2)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 7$	$117.8(2)$
N5-C11-S1	$107.1(2)$	$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 11$	$88.96(13)$
O4-C8-N2-C9	$-2.0(5)$	$\mathrm{S} 2-\mathrm{C} 11-\mathrm{N} 5-\mathrm{N} 4$	$-179.0(2)$
$\mathrm{O} 5-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8$	$177.5(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 7$	$4.3(4)$
N2-C9-N3-C10	$-177.6(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 4$	$171.9(2)$
S1-C10-N3-C9	$1.2(4)$	$\mathrm{S} 2-\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 10$	$179.1(2)$

The asymmetric unit of (I), with 50% probability displacement ellipsoids.

Figure 2
Packing diagram of (I), showing hydrogen bonds (dashed lines) and $\pi-\pi$ stacking interactions [symmetry codes: (a) $x, y, z ;(b) 1-x, 1-y,-z ;(c)$ $1-x,-y, 1-z]$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2 $2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.02	$2.852(3)$	162
N5-H5A $\cdots \mathrm{N}^{\mathrm{ii}}$	0.86	2.30	$2.991(3)$	137
N2-H2A \cdots O3	0.86	2.23	$2.652(3)$	110
N3-H3A \cdots O4	0.86	1.91	$2.601(3)$	136

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z+2$.
All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic and aldehyde H , $\mathrm{C}-\mathrm{H}=0.97 \AA$ for methylene $\mathrm{H}, \mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

organic papers

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Hubei Provincial Department of Education Scientific Research Fund for Distinguished Young Scholars (No. Q200529003).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. \& Fujita, T. (1996). J. Pestic. Sci. 21, 195-201.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Song, X., Tan, X., Wang, Y., Meng, X. \& Shi, B.-A. (2005). Acta Cryst. E61, o1731-o1732.
Song, X.-J., Zhang, S.-H., Li, Y.-H. \& Tan, X. H., Wang, Y. G. (2005). Acta Cryst. E61, o2360-o2362.
Wang, S., Allan, R. D., Skerritt, J. H. \& Kennedy, I. R. (1998). J. Agric. Food. Chem. 46, 3330-3338.
Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. \& Lu, B.-X. (1999) Chem. J. Chin. Univ. 20, 1903-1905.
Wang, Y. G., Wang, Z. Y., Zhao, X. Y. \& Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606-1609.
Wang, Y. G., Zhao, X. Y., Gong, Y. X., Ye, W. F. \& Zhang, Z. W. (2003). Chin. J. Org. Chem. 23, 1165-1168.
Zhang, Z. W., Wang, Z. Y., Wang, Y. G., Chen, C. B. \& Song, X. J. (2005). Chin. J. Appl. Chem. 22, 278-281.

[^0]: (C) 2005 International Union of Crystallography

