organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Jian Song,^a* Xiao-Hong Tan,^a Yao-Hua Li,^a Zheng-Wen Zhang^b and Yan-Gang Wang^b

^aSchool of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi Hubei 445000, People's Republic of China, and ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: whxjsong@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.047 wR factor = 0.131 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 1-[(4-Nitrophenoxy)acetyl]-3-(5-thioxo-4,5-dihydro-1,3,4-thiadiazolin-2-yl)urea dimethylformamide solvate

In the title compound, $C_{11}H_9N_5O_5S_2\cdot C_3H_7NO$, the urea scaffold, which adopts a planar configuration mediated by intramolecular $N-H\cdots O$ hydrogen bonds, is nearly coplanar with the thiadiazole ring and the benzene ring. Intermolecular paired $N-H\cdots N$ hydrogen bonds result in the formation of an $R_2^2(6)$ motif. Intermolecular $\pi-\pi$ stacking interactions are also present.

Received 15 August 2005 Accepted 24 August 2005 Online 31 August 2005

Comment

1,3,4-Thiadiazole derivatives are known to display a broad spectrum of pesticidal activity (Nakagawa *et al.*, 1996; Wang *et al.*, 2004). Aroyl ureas have been reported to possess diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant growth regulating activities (Wang *et al.*, 1998; Zhang *et al.*, 2005). In an extensive search for new plant growth regulators, compounds incorporating both the 1,3,4-thiadiazole nucleus and aroyl urea groups have been synthesized in our laboratory, including the title compound, (I). The crystal structure of (I) has been investigated by X-ray diffraction as part of our ongoing structural studies of this class (Song, Tan *et al.*, 2005; Song, Zhang *et al.*, 2005) and to provide a basis for consideration of stereochemical structure-activity relationships.

The asymmetric unit of the crystal structure contains a solvent molecule of dimethylformamide (DMF; Fig. 1). The acyl urea scaffold is essentially planar for the formation of intramolecular N-H···O hydrogen bonds, thus assuming the most stable configuration. The molecule is nearly planar, the dihedral angle formed by the thiadiazole ring with the benzene ring being 7.3 (1)°. Bond lengths and angles in (I) are as expected (Table 1). In the crystal structure, two neighbouring molecules are linked by complementary N-H···N hydrogen bonds into an $R_2^2(6)$ motif in a head-to-head manner, as shown in Fig. 2. Also present are π - π stacking interactions (Fig. 2) between thiadiazole and benzene rings. The interplanar spacing is 3.655 (2) Å, the centroid-to-centroid separation is 3.874 (2) Å and the centroid offset is 1.284 (2) Å.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

The required 2-amino-5-mercapto-1,3,4-thiadiazole was prepared by addition cyclocondensation of thiosemicarbazide and carbon disulfide according to a literature method (Wang *et al.*, 1999). The title compound was then synthesized according to the procedure of Wang *et al.* (2003). Suitable crystals for the X-ray analysis were obtained by slow evaporation of an acetone–DMF (3:1) solution at room temperature (m.p. 510–511 K). IR (KBr, cm⁻¹): v 3339, 3081, 1724, 1706, 1602, 1256; ¹H NMR (DMSO- d_6): δ 14.15 (*s*, 1H), 11.40 (*s*, 1H), 11.07 (*s*, 1H), 8.22–7.10 (*m*, 4H), 4.93 (*s*, 2H). Analysis calculated for C₁₁H₉N₅O₅S₂: C 37.18, H 2.55, N 19.71%; found: C 36.97, H 2.73, N 19.82%.

Z = 2

 $D_x = 1.528 \text{ Mg m}^{-3}$

Cell parameters from 1691

 $0.20 \times 0.20 \times 0.20$ mm

3253 independent reflections 2384 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0673P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.0083P]

 $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Mo $K\alpha$ radiation

reflections $\theta = 2.4-27.5^{\circ}$

 $\mu = 0.33~\mathrm{mm}^{-1}$

T = 292 (2) K

Block, yellow

 $R_{\rm int} = 0.051$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -12 \rightarrow 13$ $l = -14 \rightarrow 13$

Crystal data

 $\begin{array}{l} C_{11}H_9N_5O_5S_2\cdot C_3H_7NO\\ M_r = 428.47\\ Triclinic, P\overline{1}\\ a = 7.9981 (12) Å\\ b = 11.3139 (16) Å\\ c = 12.0232 (17) Å\\ \alpha = 68.893 (2)^{\circ}\\ \beta = 70.744 (2)^{\circ}\\ \gamma = 70.897 (2)^{\circ}\\ V = 931.0 (2) Å^{3} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.936, T_{max} = 0.936$ 4982 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.131$ S = 1.023253 reflections 255 parameters H-atom parameters constrained

Table 1

Selected	geometric	parameters	(A,	°).
----------	-----------	------------	-----	-----

C8-O4	1.216 (3)	C10-N3	1.374 (3)
C8-N2	1.364 (3)	C10-S1	1.736 (3)
C9-O5	1.205 (3)	C11-N5	1.335 (3)
C9-N3	1.356 (3)	C11-S2	1.656 (3)
C9-N2	1.389 (3)	C11-S1	1.740 (3)
C10-N4	1.282 (3)	N4-N5	1.370 (3)
O3-C7-C8	110.7 (2)	\$2-C11-\$1	126.19 (17)
O4-C8-N2	124.2 (3)	O1-N1-O2	122.9 (3)
N2-C8-C7	117.8 (2)	C8-N2-C9	126.9 (2)
O5-C9-N2	121.7 (2)	C10-N4-N5	108.3 (2)
N3-C9-N2	115.2 (2)	C11-N5-N4	119.7 (2)
N4-C10-S1	115.9 (2)	C4-O3-C7	117.8 (2)
N5-C11-S1	107.1 (2)	C10-S1-C11	88.96 (13)
04 C ⁰ N2 C ⁰	2.0.(5)	62 C11 N5 N4	170.0 (2)
04-08-N2-09	-2.0 (5)	S2-C11-N5-N4	-1/9.0 (2)
05 - C9 - N2 - C8	177.5 (3)	C5-C4-O3-C/	4.3 (4)
N2-C9-N3-C10	-177.6(2)	C8-C7-O3-C4	171.9 (2)
S1-C10-N3-C9	1.2 (4)	S2-C11-S1-C10	179.1 (2)

The asymmetric unit of (I), with 50% probability displacement ellipsoids.

Figure 2

Packing diagram of (I), showing hydrogen bonds (dashed lines) and π - π stacking interactions [symmetry codes: (a) x, y, z; (b) 1 - x, 1 - y, -z; (c) 1 - x, -y, 1 - z].

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O6^{i}$	0.86	2.02	2.852 (3)	162
$N5-H5A\cdots N4^{ii}$	0.86	2.30	2.991 (3)	137
$N2-H2A\cdots O3$	0.86	2.23	2.652 (3)	110
N3−H3A···O4	0.86	1.91	2.601 (3)	136

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 2.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic and aldehyde H, C—H = 0.97 Å for methylene H, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

organic papers

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Hubei Provincial Department of Education Scientific Research Fund for Distinguished Young Scholars (No. Q200529003).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pestic. Sci. 21, 195–201.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Song, X., Tan, X., Wang, Y., Meng, X. & Shi, B.-A. (2005). Acta Cryst. E61, o1731–o1732.
- Song, X.-J., Zhang, S.-H., Li, Y.-H. & Tan, X. H., Wang, Y. G. (2005). Acta Cryst. E61, 02360–02362.
- Wang, S., Allan, R. D., Skerritt, J. H. & Kennedy, I. R. (1998). J. Agric. Food. Chem. 46, 3330–3338.
- Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). *Chem. J. Chin. Univ.* 20, 1903–1905.
- Wang, Y. G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606–1609.
- Wang, Y. G., Zhao, X. Y., Gong, Y. X., Ye, W. F. & Zhang, Z. W. (2003). Chin. J. Org. Chem. 23, 1165–1168.
- Zhang, Z. W., Wang, Z. Y., Wang, Y. G., Chen, C. B. & Song, X. J. (2005). *Chin. J. Appl. Chem.* **22**, 278–281.